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Abstract—Core to many learning pipelines is visual recognition
such as image and video classification. In such applications,
having a compact yet rich and informative representation plays
a pivotal role. An underlying assumption in traditional coding
schemes (e. g. , sparse coding) is that the data geometrically
comply with the Euclidean space. In other words, the data is
presented to the algorithm in vector form and Euclidean axioms
are fulfilled. This is of course restrictive in machine learning,
computer vision and signal processing as shown by a large
number of recent studies. This paper takes a further step and
provides a comprehensive mathematical framework to perform
coding in curved and non-Euclidean spaces, i. e., Riemannian
manifolds. To this end, we start by the simplest form of coding,
namely bag of words. Then, inspired by the success of vector
of locally aggregated descriptors in addressing computer vision
problems, we will introduce its Riemannian extensions. Finally,
we study Riemannian form of sparse coding, locality-constrained
linear coding and collaborative coding. Through rigorous tests,
we demonstrate the superior performance of our Riemannian
coding schemes against state-of-the-art methods on several visual
classification tasks including head pose classification, video-based
face recognition and dynamic scene recognition.

Index Terms—Riemannian Geometry, bag of words, vector of
locally aggregated descriptors, sparse coding, locality-constrained
linear coding, collaborative coding.

I. INTRODUCTION

IN this paper, we devise a frame-work to exploit state-of-
the-art coding methods such as Vector of Locally Aggre-

gated Descriptors (VLAD) [22] and Sparse Coding (SC) [40]
where the local descriptors belong to a Riemannian manifold.
Classical coding/aggregating techniques [22], [31], [24] are
designed to work only with vectors (i. e., local descriptors
are points in Rn). Specifically, compact VLAD codes have
been shown to be exceptionally successful for face and texture
classification [6], [10]. Lately, a few studies target the problem
of coding/aggregation when the local descriptors are structured
(e. g. , subspaces) and non-vectorial [17]. Inspired by the
fact that describing images or videos by local descriptors is
the method of choice [24], [22], [28] these days, we add a
novel dimension to the applicability of such techniques by
introducing a mathematical foundation for coding/aggregation
of structured descriptors.

A diverse number of learning systems enjoy from represen-
tations of data that are compact yet discriminative, informative
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and robust to critical measurements. A notable example is
the Diffusion Tensor Imaging (DTI) technique which repre-
sents each voxel in 3-D brain scans by a 3 × 3 Symmetric
Positive Definite (SPD) matrix. It is now an accepted fact
that analyzing the resulting diffusion tensors by vectorizing
them deteriorates the performances heavily and can lead to
solutions that are physically meaningless [1]. Another example
of a structured descriptor is the Region Covariance Descriptor
(RCovD) [36], successfully used in human detection [36],
texture classification [9], human head pose estimation [35] and
face recognition [38], [18], [19]. RCovDs offer compact and
rich visual content representations by fusing various features
while reducing the impact of noisy samples [36], [9]. Similarly,
linear subspaces as structured descriptors offer a convenient
platform to compensate for a wide range of image variations
and have been used with promising results in image set and
video classification [11], [17].

Despite their intriguing properties, analyzing the aforemen-
tioned descriptors is not straightforward as a result of their
non-Eucliudean geometry. More specifically, diffusion tensors
and RCovDs belong to the manifold of SPD matrices [27] and
linear subspaces are points on the Grassmann manifold [8].
Although the two manifolds are Riemannian (i. e., equipped
with metrics), the lack of a vector space structure is a barrier
for developing inference methods [2], [27], [36].

In this paper, we examine image and video-based recogni-
tion tasks where the local descriptors have the aforementioned
Riemannian structures, namely the SPD or linear subspace
structure. To be precise, we provide answers to the two
following questions

• can we encode the local structured descriptors into a fixed
length and discriminative vector?

• can we derive a universal mathematical scheme that en-
hances formulating the encoding problem into an elegant
solution?

To this end, we begin by providing a solution to compute
Riemannian version of the conventional VLAD, namely R-
VLAD, using the geodesic distance of the underlying manifold
as the nearness measure. Then, we clarify that the resulting
codes are actually obtained from a new concept which we
name Local Difference Vectors (LDV). Furthermore, ana-
logues to the Higher-Order (HO-) VLAD [26], we also lever-
age higher order statistics of local structured descriptors for R-
VLAD codes and make them more discriminative. Lastly, with
the aid of the LDVs, we expand our Riemannian coding tech-
niques and provide intrinsic solutions to Riemannian Sparse
Coding (R-SC) and two of its variants, namely Riemannian
version of the Locality-constrained Linear Coding [37] (R-
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LLC) and the Collaborative Coding [42] (R-CC).
With LDVs, we show that coding/aggregation with other

metrics/closeness measures rather than geodesic distances is
also possible. In other words, we do not confine ourselves
to the geodesic distance case and develop the sister family
of our methods by exploiting various well-known forms of
similarity measures (e. g. , divergences) defined on the un-
derlying manifolds. Our motivation is the fact that one can
seamlessly use our general formulation with a metric suitable
for a specific task at hand. For example, one may choose a
divergence over the geodesic distance if computing geodesics
is demanding. More specifically, we employ the Stein [32]
and Jeffrey [39] divergences on the SPD manifold and the
projection distance [16] on Grassmannian to obtain new vari-
ants of our solution. Last but not least, our contributions
enable one to aggregate local descriptors residing on curved
spaces. Therefore, conventional forms of coding/aggregation
are indeed special cases of our universal scheme if the space
is selected to be Euclidean.

II. RELATED WORK

In this section, we review some relevant encoding methods
to our proposals, such as Bag of Words (BoW), Vector of
Locally Aggregated Descriptors (VLAD) and Sparse Coding
(SC).

A. Bag of Words
While celebrating their third decade of birth, BoW [31]and

its extensions [24] continue to be the baseline image and video
representations. Various alternatives have been proposed to
improve the discriminatory power of the original BoW model.
Notable examples include Video Google [31] in which the
resulting descriptor elements are graded by inverse document
frequency terms and spatio-temporal pyramid matching [24]
which considers the information about the spatial layout of
features in the final image representation.

B. Vector of Locally Aggregated Descriptors
The VLAD descriptor, one of the main elements in this

work, can be understood as a simpler version of the earlier
Fisher Vectors (FV) derived from Fisher kernel [28]. Assuming
that an incoming variable-sized set of descriptors follows
a parametric generative model, FV can provide fixed-length
descriptors by taking the gradients of the samples’ likelihood
with respect to the parameters of the distribution, weighted
by the inverse square root of the Fisher information matrix. It
has been shown that VLAD inherits the useful properties of
FV by providing compact codes with relaxed assumptions on
the origin of the samples and the scale of the output vector
components (to be uniform) [22].

Peng et al. in [26] address the problem of enriching VLAD
codes by higher-order statistics (called HVLAD) and super-
vised codebook learning (called SVLAD). The complimentary
information in their HVLAD descriptor are second and third-
order statistics which are obtained from covariance matrix and
skewness measure of the points in each cluster. VLAD accu-
racy scores are further boosted by discriminatively learning
the codebook in SVLAD.

C. Sparse Coding

Encoding a vector as linear combination of a few elements
of an over-complete codebook is recognized as SC and has led
to notable performances in various computer vision tasks [40],
[44]. Another alternative to extend SC on non-linear spaces
is through recasting the problem into Reproducing Kernel
Hilbert Spaces (RKHS) via the kernel trick [7], [18], [17]. This
leads to a convex quadratic problem which can be addressed
conveniently. Another advantage of this method is that one
could benefit from SC while having more separable samples
in the resulting higher dimensional RKHS. Nevertheless, one
is always obliged to find a valid kernel to be able to work on
the manifold.

In [41], Xie et al. formulate the problem of sparse cod-
ing and dictionary learning on SPD manifolds using the
Reimannian geodesic distances. To this end, they propose a
coordinate-independent approach to reconstruct a given sample
using affine linear combination of a small number of dictionary
atoms. We will elaborate on this method more in § IV-C.

III. BACKGROUND

In this section, we introduce some preliminary concepts
such as Riemannian geometry and conventional VLAD coding
which are of essential in our developments. Throughout the
paper, we use bold lower-case letters (e. g. , x) to show
column vectors and bold upper-case letters (e. g. , X) to show
matrices. [·]i is used to show the i-th element of a vector.
1n and In show vector of ones in Rn and the n× n identity
matrix, respectively. `1 and `2 norms of a vector are denoted by
‖x‖1 =

∑
i |[x]i| and ‖x‖ =

√
xTx, respectively. The Frobe-

nius norm of a matrix is shown by ‖X‖F =
√

Tr(XTX),
with Tr(·) indicating the matrix trace. The determinant of a
matrix is shown by det(X). Finally, log(X) is the principal
logarithm of matrix X .

A. Riemannian Geometry

A manifold M is a Hausdorff topological space which
locally resembles a Euclidean space Rm. The tangent space
is a vector space attached to a point P ∈ M, TPM, which
consists of the tangent vectors of all possible curves on the
manifold passing through P [27]. A Riemannian manifold is
differential and equipped with a metric on the tangent spaces.
In fact, the structure of a Riemannian manifold is specified by
the metric. A Riemannian metric is a continuous collection of
dot products on the tangent space at each point of the manifold.
It is usually chosen to provide robustness to some geometrical
transformations. Furthermore, it enables one to define lengths
and angles on the manifold.

Smooth curves connect points on a Riemannian manifold.
Having the Riemannian metric at the disposal, one can com-
pute instantaneous speed (direction and magnitude) and length
of a given curve. The curves yielding the minimum distance
for any two points of the manifold are called geodesics and
their length is the geodesic distance.

On a Riemannian manifoldM, let −→pq ∈ TPM be a tangent
vector. For geodesically complete manifolds (the case in our
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paper), there exists a unique geodesic starting at P associated
with this tangent vector and hence −→pq can identify a point Q ∈
M. The exponential map expP (·) : TPM→M, guaranties
that the length of the tangent vector is equal to the geodesic
distance. The logarithm map logP (·) = exp−1P (·) : M →
TPM, projects a point on the manifold to the tangent space
TPM, i. e., −→pq = logP (Q). We note that, both maps vary as
the point P moves along M.

B. The Manifold of Symmetric Positive Definite Matrices

A real d × d matrix C is SPD if and only if zTCz > 0
for every non-zero vector z ∈ Rd. Sd++ denotes the space
formed of these SPD matrices which is a Lie group with a
manifold structure. This allows one to use relevant concepts of
differential geometry, e. g. , geodesics, when addressing Sd++.
The tangent space at a point X ∈ Sd++ is the set of all d× d
symmetric matrices. Formally,

TXSd++ , {∆ ∈ Rd×d : ∆ = ∆T } . (1)
RCovDs are SPD matrices and therefore it is essential to

utilize Riemannian geometry to analyze them. Formally, a d×d
RCovD can be constructed from a set of r observations O =
{oi}ri=1, oi ∈ Rd, extracted from a region in an image (or a
block in a video) as follows

CI =
1

r − 1

r∑
i=1

(oi − o) (oi − o)
T
, (2)

where o = 1
r

∑r
i=1 oi.

Sd++ is mostly studied with the Riemannian struc-
ture induced by the Affine Invariant Riemannian Metric
(AIRM) [27].

Definition 1. The geodesic distance δG : Sd++ × Sd++ → R+

derived from the AIRM is given by
δG(X,Y ) , ‖ log(X−1/2Y X−1/2)‖F . (3)

To measure similarities on SPD manifolds, two other types
of symmetric Bregman divergences, namely the Stein [32] and
the Jeffrey [39] divergences are also popular.

Definition 2. One symmetric form of Bregman divergence is
the Stein metric δS : Sd++ × Sd++ → R+ which is defined as

δ2S(X,Y ) , ln det

(
X + Y

2

)
− 1

2
ln det(XY ) . (4)

Definition 3. Another symmetric form of Bregman divergence
is the Jeffrey (J or symmetric KL) divergence δJ : Sd++ ×
Sd++ → R+ given by

δ2J(X,Y ) ,
1

2
Tr(X−1Y ) +

1

2
Tr(Y −1X)− d . (5)

C. The Grassmann Manifold

To have a better understanding of the Grassmann manifold,
we first define Stiefel manifold. The Stiefel manifold S(p, d)
is the set of d × p , 0 < p < d, matrices with orthonormal
columns. More formally,

S(p, d) , {X ∈ Rd×p : XTX = Ip} . (6)
A point on the Grassmann manifold Gpd is a subspace

spanned by the columns of a full rank d × p matrix [8].
In other words, given that matrices are called equivalent if
their columns span the same subspace of order p, equivalence

classes of matrices of size d × p with orthonormal columns
represent points on Gpd . The tangent space at a point X ∈ Gpd
admits

TXGpd , {∆ ∈ Rd×p : XT∆ + ∆TX = 0} . (7)
The geodesic distance between two subspaces (or points on

the Grassmannian) is defined as the magnitude of the smallest
rotation that takes one point to the other [17].

Definition 4. On the Grassmann manifold, the geodesic dis-
tance between two subspaces X and Y is defined as

δG(X,Y ) , ‖Θ‖ , (8)
with Θ = [θ1, θ2, · · · , θp] denoting the vector of principal
angles between the two subspaces [8].

Beside the geodesic distance on Gpd , the projection metric
is also widely used.

Definition 5. The projection distance, δP : Gpd × G
p
d → R+,

between X and Y is defined as [17], [16]
δ2P (X,Y ) , ‖XXT − Y Y T ‖2F . (9)

D. Conventional Coding Methods

Let us assume that a set of local descriptors X =
{xt}mt=1,xt ∈ Rd extracted from an image or video and a
codebook D with atoms {di}ki=1, di ∈ Rd are at our disposal.
Coding algorithms represent each query point x as some
function of codebook atoms di. Furthermore, some additional
constraints might be added to objective functions to impose
useful structure on the codes and subsequently obtain a more
discriminative representation.

1) VLAD: To review the VLAD method, we begin by
studying its function in Euclidean spaces through its predeces-
sor, the Fisher Vector (FV) [28]. FV encodes the set X into a
high-dimensional vector representation by fitting a parametric
generative model in the form of a Gaussian Mixture Model
(GMM) with k components to the local descriptors, i. e.,

p(xt|λ) =

k∑
i=1

ωiN (xt|µi,Σi) ,

where λ = {ωi,µi,Σi} are the mixture weight, mean and
covariance of the Gaussian components, respectively.

The FV descriptor is obtained by computing the gradients of
the log-likelihood of the model with respect to its parameters
(also known as the score functions in statistics). It leads to a
representation that captures the contribution of the individual
parameters to the generative process. Related to VLAD, is the
first order differences between members of the set X and each
of the GMM centers, i. e.,

∇µi
log p(X|λ) =

m∑
t=1

γi(xt)Σ
−1
i (µi − xt) , (10)

where γi(xt) denotes the soft-assignment of xt to the i-th
Gaussian, i. e.,

γi(xt) =
ωiN (xt| µi,Σi)∑k
j=1 ωjN (xt| µj ,Σj)

.

VLAD partitions the input vector space Rd into k clusters by
learning a codebook D with atoms {di}ki=1. Then, a descriptor
V ∈ Rkd is generated by stacking k Local Difference Vectors
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(LDV) vi aggregating the differences di −xt in each cluster.
More formally for the set X ,

vi =
∑

xt∈di

di − xt , (11)

where x ∈ di denotes that the nearest codeword to x is di.
Comparing Eq. (10) to Eq. (11), one can observe that

1) VLAD equally characterizes the distribution of local
descriptors with respect to the centers. Hence, VLAD can
be conceived as a non-probabilistic version of the FV.

2) In contrast to FV, VLAD assumes that the covariance
matrices of the Gaussians are diagonal and fixed, i. e.,
Σi = σId, ∀i ∈ {1, 2, · · · , k}.

2) Sparse Coding: In Euclidean spaces, the idea of sparse
coding is to reconstruct the input x through a linear combina-
tion of codebook elements, i. e., x =

∑k
i=1 di[y]i, such that a

small number of codewords is involved [40]. The problem of
coding the single query input xt can be formulated as solving
the following minimization problem

min
y

∥∥xt − k∑
i=1

di[y]i
∥∥2 + λ

∥∥y∥∥
1
, (12)

where λ is the sparsity-promoter regularizer.
Since the codebook D is usually selected to be over-

complete, i. e., k > d, the regularization is essential to
ensure that the under-determined system has a unique solu-
tion. Moreover, generally pooling methods such as average
pooling or max pooling are performed on the resulting set
Y = {yt}mt=1,yt ∈ Rk, to generate the final representation
for the query set X .

3) Locality-Constrained Linear Coding: Locality-
Constrained Linear Coding (LLC) applies locality constraint
to select similar atoms to the query and learns an affine
combination of them to reconstruct the query [37]. An
approximated LLC algorithm is proposed by Wang et al. [37]
which first performs a K-nearest-neighbor (Knn) search and
then analytically solves a constrained least squares problem.
The affine combination of weights

∑k
i=1[y]i = 1 (or

equivalently 1Ty = 1) is considered to ensure a shift
invariant code is obtained

min
y

∥∥xt − ∑
di∈Knn(xt)

di[y]i
∥∥2, (13)

s.t. 1Ty = 1.

4) Collaborative Coding: Zhang et al. [42] show that
collaboratively reconstructing the query vector by codewords
is effective for face recognition problem. To generate the face
representation, a regularized least squares problem is solved
as follows

min
y

∥∥xt − k∑
i=1

di[y]i
∥∥2 + λ

∥∥y∥∥2 , (14)

where λ is the regularizer parameter.
Similar to the LLC coding, an analytic solution is obtained

by zeroing out the derivative with respect to the variable y.
The induced sparsity is weaker than the original sparse coding
method as the `2 norm is used for regularization.

IV. RIEMANNIAN CODING

In this section, we present our coding methods on Rie-
mannian manifolds. In what follows, we assume that X =
{Xt}mt=1, Xt ∈ M is a set of local descriptors extracted
from a query visual content (e. g. , an image) and D =
{Di}ki=1, Di ∈ M represents a codebook on a Riemannian
manifold M. Moreover, let δ(·, ·) : M ×M → R+ be a
measure of similarity defined on M.

A. Riemannian Bag of Words

In the simplest and most straightforward model, for the
query set X and the codebook D, a representation y is
obtained by BoW algorithm using the hard assignment strat-
egy [31]. In this case, a histogram y ∈ Rk is obtained by
assigning each query point Xt to its closest codeword from
the set D using the given measure δ inM. The i-th dimension
of y, [y]i, is obtained using [y]i = #

(
Xt ∈Di

)
, where #(·)

denotes the number of occurrences. This obviously requires
m×k comparisons. In the end, in order to add robustness to the
number of extracted local descriptors, the resulting histogram
is `2 normalized via ŷ = y

‖y‖ .

B. Riemannian Vector of Locally Aggregated Descriptors

The key inspiration in VLAD coding is that it has been
successfully used in addressing many challenging tasks such
as image retrieval [22], [15] and scene recognition [15]. The
interest has even influenced the deep learning community [15],
[6]. Besides, the discriminative representation obtained by
VLAD is the result of rudimentary vector addition and sub-
traction. Another important merit is the reliance on small
codebooks which further simplifies the learning stage and
increases the popularity of VLAD.

Here, we develop a general framework for Riemannian
VLAD (R-VLAD). To this end, we first start by devising R-
VLAD on M when the similarity measure is the geodesic
distance, i. e., δG. We then discuss our universal solution
in which any arbitrary similarity measure can take the role
of δG and derive faster variants of R-VLAD. We conclude
this section by introducing an approach to enrich R-VLAD
by encoding more information about the distribution of the
local descriptors and name it Higher Order R-VLAD (HO-R-
VLAD).

1) R-VLAD: the geodesic distance scenario: A closer look
at the signature generation steps of the conventional VLAD
reveals that the LDVs are actually the gradient of the `2

norm (or simply the Euclidean distance). By discarding the
associated normalization terms in the FV algorithm we arrive
at equity of the FV and VLAD. Having said that, it is easy to
conclude that R-VLAD signature on M is attained when the
following tools are at the disposal
• metric δ which measures the nearness of the local de-

scriptors to the codewords.
• addition and subtraction operators on M.
SinceM is a metric space, a natural way to address the first

requirement is to choose the geodesic distance δG :M×M→
R+. To address the second requirement, we note that on M,
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one can identify a vector
−−→
AB as a vector of the tangent space at

A, i. e., TAM. As a result, the subtraction operator onM can
be obtained using the logarithm map, logA(·) :M→ TAM.
The concept of vector subtraction via the logarithm map has
been used before. For instance, in [27] for addressing the
problem of interpolation, in [21] for sparse coding and in [13]
for performing dimensionality reduction. This discussion hints
towards proposing the R-VLAD on a Riemannian manifold as
follows
• utilize the geodesic distance ofM to identify the nearest

local descriptors to the codewords.
• exploit the tangent space attached to each codeword on
M, to build a Riemannian LDV for the codewords.

It is worth noting that, no further consideration (such as
parallel transport) is required here, as the pole of the tangent
space (Di in our case) is fixed. In other words, the outputs of
the logarithm map are compatible with each other 1. As such,
Eq. (11) on M has the following form

vi =
∑

Xt∈Di

logDi
(Xt) , (15)

where logDi
(·) is the logarithm map to the tangent space TDi .

Although being perfectly accurate, the computational load
of δG seems to be the sticking point as it leads to complex
and slow algorithms, especially in our case where we have
several local descriptors per query image/video. To alleviate
this limitation, several studies recommend faster alternatives
with excellent theoretical properties and similar results in
practice [39], [5], [2], [16]. This motivates us to engage other
valid metrics and devise a universal form for our R-VLAD.

2) R-VLAD: arbitrary metric scenario: For an arbitrary
metric δ, the second requirement should only be taken into
account. Since in the Euclidean case, the LDV can be imagined
as the gradient of the distance function (see § III-D1), it is nat-
ural to define the LDV on M as

∑
Xt∈Di

∇Di
δ2(Di,Xt)

2.
This idea is reinforced even more by the following theorem.

Theorem 1. For a Riemannian manifold M, the gradient of
the geodesic distance function, δG :M×M→ R+ is

∇Xδ
2
G(X,Y ) = −2 logX(Y ). (16)

Proof. The interested reader is referred to [34].

In practice, choosing ∇Di
δ2(Di,Xt) for LDV, does not

provide a solution. The main reason is that, the norm of
∇Xδ

2
G(X,Y ) is directly related to the metric δG. More

formally,
‖∇Xδ

2
G(X,Y )‖2 = 4‖ logX(Y )‖2 = 4δ2G(X,Y ).

This is indeed inherited to the Euclidean space case where
the metric is selected to be the geodesic distance (or equiva-
lently the Euclidean distance). However, this is not valid for
any arbitrary metric as illustrated by the following counterex-
ample.

1To be precise, this argument is valid as long as xt is not in the cut locus of
ci. This is of course not a very restricting assumption as in many manifolds
(e. g. , the SPD manifold) the cut locus is indeed empty.

2On an abstract Riemannian manifold M, the gradient of a smooth real
function f at a point X ∈ M, denoted by ∇xf , is the element of TxM
satisfying 〈∇xf, ζ〉x = Dfx[ζ] for all ζ ∈ TxM, where Dfx[ζ] denotes
the directional derivative of f at x in the direction of ζ.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.05

0.1

0.15

0.2

0.25

δ2
p

‖
∇
δ
2 p
‖2

Fig. 1: Behavior of the squared norm of the gradient against distance function
for the projection distance on G23 .

Algorithm 1 The proposed R-VLAD technique
Input:

• local descriptors X = {Xt}mt=1,Xt ∈M, obtained from a query
image/video,

• codebook D = {Di}ki=1 ,dk ∈M
Output:

• V (X ) the R-VLAD representation of X
1: for i = 1→ k do
2: Find all Xt ∈Di, the closest points from the query set X to Di

3: Compute vi, the i-th LDV, using Eq. (17)
4: end for
5: Concatenate the resulting LDVs to construct the final signature, i. e.,

V (X ) =
[
vT
1 ,v

T
2 , · · · ,vT

k

]T

Example 1. Fig. 1 illustrates the behavior of
‖∇Xδ

2(X,Y )‖2, i. e., squared norm of gradient by
varying distance function δ2(X,Y ), for the projection metric
on G23 (equations are provided in § IV-B4). Interestingly,
‖∇Xδ

2(X,Y )‖2 will start decreasing as the point Y
gets farther away from the point X . As a result, during
coding, a point which should contribute significantly to the
descriptor, acts as an unimportant point. This deteriorates
the discriminatory power.

The above example provides us with the following guideline
for constructing an LDV on a Riemannian manifold.
• the length of the LDV must represent the metric.

As such, we propose the following form of LDV for our
general R-VLAD descriptor. Algorithm 1 summarizes the steps
on the R-VLAD coding.

vi =
∑

Xt∈Di

ψδ(Di,Xt) , (17)

where ψδ(D, ·) :M×M→ TDM is defined as

ψδ(Di,Xt) = δ(Di,Xt)
∇Di

δ2(Di,Xt)

‖∇Di
δ2(Di,Xt)‖

.

Remark 1. To avoid having a concentrated distribution
around zero in our experiments, we normalize the R-
VLAD descriptors using the following two steps. First, a
power normalization is applied utilizing the function y :
R → R, y(x) = sign(x)

√
|x|, where x is an element of the

descriptor and |·| shows absolute value. Second, an `2 normal-
ization is performed to make the energy of the codes uniform.
This post-processing is compatible with the recommendations
in [22] and could increase the discriminatory power of the
final descriptors.

Table I presents the gradients of all the studied metrics
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TABLE I: Gradients of the metrics on the SPD and Grassmann
manifolds.

Metric ∇Xδ
2

geodesic 2X1/2 log(X−1/2Y X−1/2)X1/2

Stein X(X + Y )−1X − 1
2
X

Jeffrey 1
2
X

(
Y −1 −X−1Y X−1

)
X

geodesic No analytic form
projection −4

(
Id −XXT

)
Y Y TX

(required by Eq. (17)). In the following two parts, we devise
the R-VLAD technique for the SPD and the Grassmann
manifolds.

3) R-VLAD on SPD Manifold: On Sd++, the gradient of a
function f : Sd++ → R at X admits the following form [33]

∇Xf = Xsym(Df)X, (18)
where sym(X) = 0.5(X +XT ) and Df is the derivative of
the function f : Rd×d → R w.r.t X .

As for the Dδ2S and Dδ2J , we can infer the gradients
from [5], required in the R-VLAD algorithm as depicted in
Table I3.

Computational Complexity: The computational load of
building R-VLAD descriptor is dictated by the computational
load of the incorporated metric δ2 as wells as its gradient.
Besides, one should consider the complexity of codebook
learning on M. The computational loads of computing δ2G,
δ2J and δ2S are 4d3, 8/3d3 and d3, respectively [5]. Computing
the gradient of δ2G needs an eigenvalue decomposition (for
computing principal matrix logarithm) which adds up to a total
of 9d3 flops for δ2G (considering the matrix multiplications).
For δ2J and δ2S , computing the gradients only requires a matrix
inversion which can be computed in O(d3). Therefore, the
computational complexity of R-VLAD with δ2J and δ2S is
O(17/3d3) and O(4d3), respectively.

4) R-VLAD on Grassmannian: The gradient of a function
on the Grassmann manifold, i. e., f : Gpd → R admits the
following form

∇Xf =
(
Id −XXT

)
Df, (19)

where Df is a d × p matrix of partial derivatives of f w.r.t
the elements of X . Formally

[Df ]i,j =
∂f

∂[X]i,j
.

On the Grassmann manifold, the logarithm and exponential
maps do not have an analytic form. Nevertheless, numerical
methods exist for computing both mappings. Furthermore, to
compute R-VLAD using the geodesic distance, we particularly
exploit the developments presented in [4]. As long as the
gradient of the projection metric is considered, noting that
δ2P (X,Y ) = 2p − 2‖XTY ‖2F along with Eq. (19) leads us
to the following analytic form

∇Xδ
2
P (X,Y ) = −4

(
Id −XXT

)
Y Y TX. (20)

3Note that in Table 3 of [5] a scalar factor of 0.5 is wrongly dropped
from the Jeffrey divergence (KLDM according to [5]). Also please note that
the gradient reported in [5] is the Euclidean gradient not the Riemannian as
required here.

Computational Complexity: We note that δ2G on the Grass-
mann manifold is computed using Singular Value Decomposi-
tion (SVD). Therefore, obtaining δ2G needs dp2 + p3 flops on
Gpd . In comparison, the load of computing δ2P on Grassmannian
is dp2. As for δ2G, computing the gradient (or equivalently the
logarithm map) needs a matrix inversion of size p × p, two
matrix multiplications of size d × p and a thin SVD of size
d×p. Computing thin SVD using an efficient implementation
like the Golub-Reinsch [14] takes 14dp2 +8p3 flops. As such,
a total of O

(
10p3 + 17dp2

)
flops is required for one local

descriptor. As for δ2p, computing the gradient according to the
Table I demands 4dp2 operations. This results in a total of
5dp2 flops for δ2p.

5) Boosted R-VLAD: In this part, we present a variant of
R-VLAD which in most cases further boosts the classification
accuracy. We first note that the original VLAD formulation
only considers simple first-order statistics of the LDVs to
generate the final descriptor. Peng et al. [26] address this
issue and introduce coding of higher-order statistics into the
VLAD framework. Assuming training data is clustered using
a codebook, the idea is to compute two additional super
vectors associated to each cluster, capturing the deviation of
the LDVs from qualitative measures, namely the diagonal
elements of the covariance matrix and the skewness of the
training samples. Similar in spirit to VLAD, the two forms of
high-order statistics are coded as complementary information.

Here, we further expand this idea to exploit complementary
information and adapt it to our R-VLAD descriptor. To this
end, we use the definition of LDV in § IV-B2. Let the vector σi

denotes diagonal elements of a covariance matrix constructed
from the LDVs associated to Di (training samples that are the
closest toDi). In our case, the j-th element of the second-order
super vector is computed as follows

[vo
2

i ]j =
1

#(Xt ∈Di)

∑
Xt∈Di

[
ψδ(Di,Xt)

]2
j
−
[
σi
]2
j
,

(21)
with ψ defined below Eq. (17).

As for encoding the third-order statistics, skewness takes up
the role of the diagonal elements of σi

[vo
3

i ]j =

1
#(Xt∈Di)

∑
Xt∈Di

[
ψδ(Di,Xt)

]3
j[

1
#(Xt∈Di)

∑
Xt∈Di

[
ψδ(Di,Xt)

]2
j

] 3
2

−
[
Γi
]
j
,

(22)
where Γi is the skewness vector of the training LDVs belong-
ing to the i-th codeword.

The two super vectors vo
2

i and vo
3

i are concatenated and
augmented to the original R-VLAD to form the final im-
age/video signature. The power normalization is also per-
formed in the end. We will dub this solution as Higher Order
R-VLAD (HO-R-VLAD) in our experiments.

C. Riemannian Sparse Coding

As discussed earlier (see § III-D2), the goal of sparse
coding is to find a sparse vector of coefficients y in a way
that a query point x is as close as possible to the linear
combination

∑k
i=1 di[y]i. While in Rn, this problem seems to

be well formulated, the difficulty arises when the query point
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(and subsequently each di) belongs to M, mainly because a
universal coordinate system does not exist onM. One natural
modification to the notion of usual sparse coding is introduced
by [41] in which the term xt −

∑k
i=1 di[y]i in Eq. (12) is

generalized for X ∈ M. The affine constraint 1Ty = 1 is
imposed to the code to avoid having the trivial solution y = 0.
The sparse coding using the geodesic distance is cast as

min
y

k∑
i=1

∥∥∥ logX

(
Di

)∥∥∥2[y]i + λ
∥∥y∥∥

1
, (23)

s.t. 1Ty = 1.

where logX(·) is the logarithm map to the tangent space TX
and λ is the sparsity-promoter regularizer [40].

With the aid of LDVs defined in § IV-B2, we generalize
the affine sparse coding scheme to be used with an arbitrary
metric δ. Our idea is to perform coding by minimizing the
following objective function

min
y

k∑
i=1

∥∥∥ψδ(X,Di)
∥∥∥2[y]i + λ

∥∥y∥∥
1
, (24)

s.t. 1Ty = 1.

where ψ is defined below Eq. (17).
Similar to Rn, the final descriptor of the set X is obtained by

pooling the resulting {yt}mt=1 codes. We refer to this method
as Riemannian Sparse Coding (R-SC) in our experiments.

D. Riemannian Locality-constrained Linear Coding

Similar in spirit to sparse coding is the Locality-constrained
Linear Coding (LLC) [37] in which the sparsity is a by-product
of the locality constraint. LLC is easy to compute and gives
superior image classification performance than many sophis-
ticated approaches [37]. The locality constraint is applied to
select similar atoms of a codebook for coding. Like sparse
coding, the goal is to learn a linear combination of the chosen
atoms to reconstruct each query point.

Similar to LLC in Rn, we have the luxury of a closed-form
solution for our non-linear LLC. Having a metric δ at our
disposal, for a query point X ∈ M, we first find n � k
nearest neighbors from atoms of D and then construct matrix
C by stacking ψδ(X,Di) selected vectors as its columns,
i. e., C =

[
ψδ(X,D1)|ψδ(X,D2)| · · · |ψδ(X,Dn)

]
. Then,

the LLC code y is obtained by solving the following con-
strained least squares problem

min
y

∥∥∥Cy∥∥∥2, (25)

s.t. 1Ty = 1.

Here, again the affine constraint 1Ty = 1 is imposed to
avoid having the trivial solution y = 0. As such, using the
Lagrange multipliers technique, the code y is obtained in
closed-form as

y =

(
CTC

)−1
1

1T
(
CTC

)−1
1
. (26)

In practice, a numerically stable way to minimize Eq. (26)
is obtained through solving the set of n linear equations

CTCy = 0 followed by rescaling the coefficients yi to
ensure that 1Ty = 1 [29]. We will dub this solution as
Riemannian Locality-constrained Linear Coding (R-LLC) in
our experiments.

E. Riemannian Collaborative Coding

In contrast to LLC, Collaborative Coding (CC) uses all
dictionary atoms to represent the query sample. In the original
CC, a regularized least squares problem is solved. Using
δ, for a query point X ∈ M, we first construct matrix
C by stacking ψδ(Xt,Di) vectors as its columns, i. e.,
C =

[
ψδ(X,D1)|ψδ(X,D2)| · · · |ψδ(X,Dk)

]
. Then, the

code y ∈ Rk is obtained by solving the following constrained
regularized least squares problem

min
y

∥∥∥Cy∥∥∥2 + λ
∥∥y∥∥2, (27)

s.t. 1Ty = 1.

To obtain the solution, again we use the Lagrange multi-
pliers technique. Following a similar procedure to R-LLC, we
obtain y as

y =

(
CTC + λIk

)−1
1

1T
(
CTC + λIk

)−1
1
. (28)

We will dub this solution as Riemannian Collaborative Coding
(R-CC) in our experiments.

V. K-MEANS ON RIEMANNIAN MANIFOLDS

Before delving into experiments and for the sake of com-
pleteness, we provide details of learning a Riemannian code-
book using different metrics introduced previously in §III. Like
many other codebook learning algorithms, mean computation
is a fundamental building block in our proposal. Therefore,
we define the Fréchet mean which is incorporated in our
Riemannian codebook learning.

Definition 6. The Fréchet mean for a set of points
{Xi}ni=1, Xi ∈M is the minimizer of the cost function

D∗ , arg min
D

n∑
i=1

δ2(D,Xi) , (29)

where δ :M×M→ R+ is the associated metric.

Generally, an analytic solution for Eq. (29) may not exist
and hence iterative solutions that employ the logarithm and ex-
ponential maps must be used [27]. In case of high-dimensional
manifolds, this could not be manageable.Therefore, one reason
in generalizations introduced in the previous section is that for
some metrics Eq. (29) has analytic solution.

Similar in concept to the standard k-means algorithm, we
train a codebook using an iterative scheme. The Riemannian
k-means algorithm initiates by choosing k random points from
the available training data and calling them cluster centers. In
one step, all the training samples are assigned to their closest
cluster center using the metric δ. Then, in the next step, the
cluster centers are re-estimated using the Fréchet mean.

On the SPD manifold and for the δG, the Fréchet mean is
obtained by an iterative algorithm (see [27] for more details).
In case of the Stein metric, we make use of the below theorem.
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Theorem 2. The Fréchet mean for a set of SPD matrices
{Xi}ni=1 ∈ Sd++ with δS is computed iteratively through

µ(t+1) =

[
1

n

n∑
i=1

(Xi + µ(t)

2

)−1]−1
. (30)

Proof. See [5] for the proof.

Unlike δG and δS which we do not have an analytic solution,
for the Jeffrey divergence, we have the luxury of computing
the Fréchet mean in closed-form.

Theorem 3. The Fréchet mean for a set of SPD matrices
{Xi}ni=1 ∈ Sd++ with δJ is

µ = P−1/2(P 1/2QP 1/2)1/2P−1/2 , (31)
where P =

∑
iX
−1
i and Q =

∑
iXi.

Proof. See [10] for the proof.

Similarly, the projection metric admits the following prop-
erty.

Theorem 4. The Fréchet mean for a set of points{
Xi

}n
i=1

, Xi ∈ Gpd , under δP is the p leading (largest)
eigenvectors of

∑n
i=1XiX

T
i .

Proof. See [10] for the proof.

VI. EXPERIMENTS

In this part, we provide empirical evaluation of our coding
algorithms versus the baseline and state-of-the-art methods for
a number of visual recognition tasks defined on the SPD and
Grassmann manifolds. Unless otherwise stated, a number of
overlapping blocks/cubes are extracted from images/videos.
Then, from each block/cube, we generate an RCovD or a linear
subspace, hence the block/cube corresponds to a point on the
SPD or the Grassmann manifold.

The straightforward Log-Euclidean (LE) [2] alternative of
devising VLAD on a Riemannian manifold constitutes our first
type of base-line. Basically in the LE modeling, the manifold
is embedded into a vector space through a fixed tangent space
(centered at the identity matrix in our case). Furthermore, we
will consider the popular BoW representation of an image or
video as another base-line method. Different algorithms tested
in this section are referred to as
BoWLE : Riemannian BoW algorithm trained by flattening the
underlying manifold via the identity tangent space.

R-BoWG: Riemannian BoW algorithm using geodesic dis-
tance.

R-VLADLE : Similar in spirit to the BoWLE , but we assess
the performance of VLAD model, instead of BoW.

R-VLADG/J/S/P : R-VLAD model utilizing geodesic dis-
tance, the Jeffrey, Stein, or projection metrics.

HO-R-VLADG/J/S/P : Higher-Order R-VLAD utilizing
geodesic distance, the Jeffrey, Stein, or projection metrics.

R-SCG/J/S/P : Riemannian sparse codingusing geodesic dis-
tance, the Jeffrey, Stein, or projection metrics.

R-LLCG/J/S/P : Riemannian LLC coding using geodesic dis-
tance, the Jeffrey, Stein, or projection metrics.

R-CCG/J/S/P : Riemannian CC coding using geodesic dis-
tance, the Jeffrey, Stein, or projection metrics.

A. The Manifold of SPD Matrices

Here, an image is described by a set of local RCovDs. In
particular, having a block I(x, y) of size W×H at the disposal,
let O = {oi}ri=1, oi ∈ Rd, be a set of r observations from
I(x, y). Then, using Eq. (2), the block can be described by
a d × d RCovD. We use a simple Nearest Neighbor (NN)
classifier to classify the final descriptors (such as BoW or R-
VLAD). This clearly shows the benefits of our proposal.

1) Head Pose Classification: We consider the task of
head pose (orientation) classification utilizing two datasets,
namely Heads Of Coffee break (HOCoffee) and Queen Mary
University of London (QMUL) datasets [35]. The HOCoffee
dataset is gathered for the purpose of autonomously detecting
social interactions and presents 18,117 outdoor images in low-
resolution, taken by a head detector . The QMUL head dataset
has 19,292 images, captured in an airport terminal. Images
of both datasets are of size 50 × 50 pixels and split into a
predefined training/test partition. There are 9,522 training and
8,595 test images in the HOCoffee dataset spanning 6 different
orientations: front, front-right, front-left, right, left and back.
For the QMUL dataset, 10,517 images are used for training
and the remaining 8,775 images are considered for testing.
The images are uniformly partitioned into 5 classes: front,
right, left, back and background. The classification task is
quite challenging since the datasets feature non-homogeneous
illumination and severe occlusions.

As for image descriptor, following [35], we utilized a
Difference Of Offset Gaussian (DOOG) filter-bank along color
and image gradients for both datasets. The corresponding
feature vector at image pixel (x, y) is

ox,y =
[
IL(x, y), Ia(x, y), Ib(x, y),

√
I2x + I2y ,

arctan
( |Ix|
|Iy|

)
, G1(x, y), · · · , G8(x, y)

]
,

where Ic(x, y), c ∈ {L, a, b}, is the CIELab color information,
Ix and Iy denote luminance derivatives, and Gi(x, y) shows
the response of the i-th DOOG centered at IL(x, y). Thereby,
RCovDs are on S13++.

The first column of Table II reports recognition accuracy
numbers of all the mentioned methods on the HOCoffee
dataset. Several conclusions can be drawn here. Firstly, even
the simple R-BOWG is superior to the previous state-of-
the-art algorithm, demonstrating the advantageous of local
approaches. Compared to sparse coding techniques, R-VLAD
coding with all the metrics achieve higher performances.
HO-R-VLADG is the overall winner when the classification
accuracy is considered. However, the correct classification
numbers of HO-R-VLADS and HO-R-VLADJ are on par or
slightly worse than that of the HO-R-VLADG’s value, while
being at least 65 times faster in the training stage and 27
times faster in coding phase (especially for the Jeffrey metric).
In comparison to the Log-Euclidean methods, we observe
that the proposed R-VLAD method is considerably superior,
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TABLE II: Classification accuracy numbers in % for the HOCoffee
and QMUL datasets [35].

Method HOCoffee QMUL
WARCO 80.8 [35] 91.2 [35]

BOWLE 81.6 87.2
R-BOWG 81.8 87.6
VLADLE 82.4 87.8

R-SCG 83.2 91.7
R-SCS 83.1 91.6
R-SCJ 82.9 91.2

R-LLCG 84.0 92.1
R-LLCS 83.8 91.7
R-LLCJ 83.7 91.5

R-CCG 82.7 90.6
R-CCS 82.6 90.5
R-CCJ 82.4 90.1

R-VLADG 85.0 92.5
R-VLADS 84.9 92.5
R-VLADJ 84.5 92.2

HO-R-VLADG 85.3 92.9
HO-R-VLADS 85.0 92.7
HO-R-VLADJ 84.7 92.5

suggesting the fact that the underlying Riemannian structure
is better exploited in R-VLAD.

Among sparse coding family methods, R-LLC using the
geodesic distance obtains the highest accuracy. Here, collabo-
rative construction of codes using all codebook atoms as in the
variants of R-CC yields slightly inferior recognition accuracy.
However, the accuracy numbers are still greater than the state-
of-the-art methods.

The second column of Table II, reports recognition accu-
racies of all the considered methods for the QMUL dataset.
Similar to our previous experiment, regardless of the metric,
the performance is improved by considering the higher order
information. The HO-R-VLADG achieves the highest classi-
fication accuracy which is about 1.7 percentage points greater
than [35]. Moreover, the R-VLADS works on par with the
R-VLADG while both are the preferred techniques to the R-
VLADJ in terms of classification accuracy. Among the sparse
coding family methods, the highest accuracy is obtained when
the geodesic distance is used while sparse coding with the
Jeffrey divergence yields the lowest accuracy number.

Furthermore, we tested the performance of the conven-
tional VLAD (VLADE) by varying codebook sizes to obtain
descriptors with the same size or greater than that of R-
VLAD’s descriptors. We observed that our R-VLAD methods
comfortably outperform VLADE . For example, the highest
accuracy number of VLADE on the HOCoffee and QMUL
datasets are 79.9% and 85.7%, respectively.

B. Grassmannian Manifold

As our empirical evaluation on Grassmannian manifolds, we
choose the application of recognition from videos by image-set
modeling of the videos to create Grassmannian points. Similar
to the experiments on the SPD manifolds, local descriptors
of numerous small spatio-temporal blocks of a video are

extracted. Then each cube is described by a linear subspace
using SVD. We use a linear SVM classifier to further improve
performances.

1) Dynamic Texture Classification: For our first experiment
on the Grassmann manifold, we tackled the problem of dy-
namic texture classification. To this end, we used the Dyn-
tex++ dataset [12] whose samples contain certain stationarity
properties in time domain. DynTex++ has 3600 (50×50×50)
videos of moving scenes, spanning 36 categories.

To extract local Grassmannian points, videos were first split
into cubes of size 15× 15× 15 with 5 pixels/frames overlap
in spatial/temporal axis. Then, the cubes were described by
the Local Binary Pattern in Three Orthogonal Planes (LBP-
TOP) [43]. Finally, from the extracted features, we generated
subspaces of order 6 using SVD. Therefore, our local descrip-
tors belonged to G6177. In total, 512 Grassmannian points were
obtained from each dynamic texture video.

Here, we used the experimental set-up adopted in [3]. More
specifically, videos of each category were randomly divided
into training and testing sets with equal number of videos
within each set. This process was repeated 10 times. Table III
reports average accuracy numbers along standard deviations
of all the considered methods.

Table III shows that the R-VLADP outperforms the accu-
racy number of the previous best method of [3] by more than 5
percentage points. Similar to the previous experiments, again
R-VLAD outperforms the VLAD using the Log-Euclidean
solution. However, the Log-Euclidean VLAD performs better
than the method of [3]. Moreover, HO-R-VLAD boosts the
accuracy values when the geodesic or projection metrics are
utilized as similarity measures. HO-R-VLAD with projection
metric, the HO-R-VLADP , achieves the highest average
recognition rate of 97.8%.

2) Dynamic Scene Categorization: We conducted another
experiment to classify videos of dynamic scenes (similar to
the dynamic texture videos) utilizing the Maryland ”In-The-
Wild” dataset [30]. The dataset is very challenging due to the
web nature of videos, having significant camera motions, scene
cuts, differences in appearance, scale, frame rate, illumination
conditions and viewpoint. The videos span 13 classes (e. g. ,
Avalanche) with 10 videos in each category.

Following the standard setup used in [11], we utilized the
FC7 features of the CNN of Zhou et al. [45] trained on
the Places dataset [45] which has 205 scene classes and 2,5
millions number of images. The utilized features are 4096
dimension which we subsequently reduce them to 400. To
extract local Grassmannian points, we grouped every 6 con-
secutive frames of the videos with 90% overlap and generated
the linear subspaces. As such each local descriptor belongs to
G6400. A leave-one-video-out validation protocol is considered
for consistency with previous study in [11].

The recognition accuracies for all the studied algorithms
are summarized in the third column of Table III. To the best
of our knowledge, the recent work of faraki et al. [11] has
achieved the highest accuracy on this dataset. Our HO-R-
VLAD using the grassmannian geodesic metric outperforms
this state-of-the-art by 1.5%. Furthermore, the HO-R-VLAD
using the projection metric obtains the top accuracy number,
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TABLE III: Recognition accuracies in % for the Maryland [30],
Dyntex++ [12] and YTC [23] datasets.

Method Dyntex++ Maryland YTC
Previous Best 92.4 [3] 90.0 [11] 72.6 ± 5.1 [20]

BOWLE 81.1 ± 0.5 84.6 55.3 ± 2.9
R-BOWG 92.4 ± 0.5 85.4 64.5 ± 5.1
VLADLE 93.3 ± 0.4 86.9 65.2 ± 2.8

R-SCG 96.0 ± 0.4 87.7 74.1 ± 3.0
R-SCP 96.1 ± 0.2 88.5 74.8 ± 5.2

R-LLCG 96.3 ± 0.3 88.5 75.7 ± 3.2
R-LLCP 96.3 ± 0.2 90.0 76.7 ± 4.8

R-CCG 95.4 ± 0.5 86.9 75.2 ± 2.9
R-CCP 95.8 ± 0.4 87.7 75.4 ± 2.0

R-VLADG 96.7 ± 0.3 90.0 75.6 ± 2.5
R-VLADP 97.6 ± 0.4 90.8 79.9 ± 3.6

HO-R-VLADG 97.0 ± 0.7 91.5 78.7 ± 3.8
HO-R-VLADP 97.8 ± 0.4 93.1 79.8 ± 3.7

outperforming [11] by more than 3 percentage points. Notably,
HO-R-VLAD is superior to the R-VLAD using both metrics.
Compared to the Log-Euclidean solution, R-VLAD is prefer-
able, indicating the advantage of our proposal.

3) Face Recognition from Videos: For our last experiment,
we tackled the problem of face recognition from videos.
For this task, we examined the YouTube Celebrity (YTC)
dataset [23] which comes with 1910 videos of 47 subjects.
The dataset is very challenging due to high variation of poses,
illumination conditions and facial expressions along with high
compression ratio of the images. For our evaluation, we fol-
lowed the widely used setup in Deep Reconstruction Models
(DRM) [20]. Specifically, face areas are first extracted from
all frames of the videos. This is followed by dividing each
face region into distinct blocks and extracting the histogram of
Local Binary Patterns (LBP) [25]. Concatenated LBP features
form the final descriptor.

As for the evaluation protocol, different protocols exist for
the YTC. Here again, we followed the cross validation protocol
adopted in [20]. More specifically, all videos are divided into 5
folds (equally and with minimum overlap) where each fold has
9 videos (with 3 and 6 randomly chosen videos for training and
testing, respectively). Linear subspaces of order 6 constitute
our descriptors.

The last column of Table III shows the mean correct
recognition rates along with the standard deviations of all
the methods. The results are self-explanatory. The R-VLADG
and R-VLADP comfortably outperform the DRM method.
Furthermore, the accuracy gap between the Log-Euclidean
solution and R-VLAD exceeds 10 percentage points. While
encoding higher-order information improves the accuracy of
R-VLADG, the highest accuracy number of 79.9% is obtained
by R-VLAD when the projection metric is utilized.

Here, R-LLC coding is still the preferred coding method
among the sparse coding schemes. Furthermore, collaborative
coding improves the performance over simple sparse coding
with both metrics, indicating this type of coding is more useful
-as originally devised- for face recognition task.

Computational Load: To give the reader a better picture on
the computational load of our coding methods, we recorded
the average coding times for 100 descriptors on S13++ and
G6177. These are indeed examples of the SPD and Grassmann
manifolds which we had in our experiments. Table IV shows
the recorded times using Matlab on a quad-core computer,
when different metrics are used in our coding methods. Since
the extra computational load in HO-R-VLAD (over R-VLAD)
is negligible, we removed that coding from the table.

VII. CONCLUSIONS

In this paper, we studied Riemannian coding/aggregating
methods such as VLAD [22] and sparse coding [40]. In doing
so, we were motivated by the favorable outcomes of cod-
ing/aggregating methods in conventional Euclidean spaces and
excellent discriminatory power of visual descriptors on Rie-
mannian manifolds. Particularly, we considered local RCovDs
and linear subspaces extracted from images and videos, as
structured points on the manifold of SPD matrices and the
Grassmann manifolds, respectively. Aside from an extensive
formulation, we developed a family of methods that ben-
efits from various forms of similarity measures defined on
the underlying manifolds. A comprehensive set of empirical
evaluation on various challenging computer vision problems
supported our proposal.
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